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ABSTRACT
Advances in augmented reality promise to deliver highly immersive
storytelling experiences by animating virtual characters naturally
in the real world. However, creating such realistic animated con-
tent for viewing in augmented reality is non-trivial and challenging.
In this paper, we present a novel approach to automatically gen-
erate user-centered flying creature animation paths for outdoor
augmented reality experiences. Given a sequence of storyline ac-
tions, our approach finds suitable locations for the character to
perform its actions via a location compatibility predictor trained
with user preferences, synthesizing a corresponding animation path
optimized with respect to the user’s perspective. We applied our ap-
proach to synthesize user-centered augmented reality experiences
based on different storyline actions and environments. We also
conducted user study experiments to validate the efficacy of our
approach for synthesizing desirable augmented reality experiences.
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1 INTRODUCTION
From novels, dramas, movies, to video games, people have always
been fascinated by the idea of visualizing how imaginary characters
such as dragons, unicorns, and phoenixes navigate and interact
with the real world. The recent emergence of augmented reality
(AR) devices presents us with exciting opportunities to leverage
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Figure 1: Given storyline actions (e.g. Swim, Sleep, Drink),
our approach automatically selects a compatible location
for each action and generates a user-centered path (red) by
considering factors such as the visibility and distance with
respect to the user. The virtual flying creature, a dragon in
this example, swims in the water, sleeps in between the trees,
and then drinks on the lakeshore. The path generated by our
approach is unoccluded and fully visible to the user.

AR technologies for immersive visualization of such digital story-
telling, enabling users to engage in AR experiences from animated
performances by imaginary virtual characters to virtual training
scenarios [Huang et al. 2021; Liu et al. 2022] in situ. However, un-
like traditional storytelling, AR-based storytelling needs to adapt
to environment’s contexts and the user’s viewpoint to provide a
compatible, immersive, and pleasurable experience.

Current augmented reality experiences attempt to add richness
to the medium by employing virtual characters that interact with
the viewer’s real-world environment. Researchers attempted to
enhance these experiences by leveraging scene information such
as scene semantics [Li et al. 2022; Liang et al. 2021] or scene ge-
ometry [Alghofaili et al. 2023]. However, these approaches did not
contextualize the user’s location and cater the AR experience to the
user’s unique viewpoint. Furthermore, these approaches [Alghofaili
et al. 2023; Li et al. 2022; Liang et al. 2021] operate in indoor scenes.
The development of more lightweight wireless AR devices enables
the delivery of AR animation experiences to users outdoors. Our
approach tackles the challenges of presenting large-scale outdoor
virtual character animations driven by the scene contexts and the
user’s view in augmented reality.

In this paper, we propose a new approach for user-centered con-
tent generation focusing on flying creature animation paths for
outdoor AR experiences as shown in Figure 1. The generated paths
adapt to the user and the environment to deliver immersive AR
experiences. Our primary goal in this work is to find an optimal
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character animation path with respect to the user’s current status
and surroundings based on a input sequence of the character’s
storyline actions. In other words, when it generates paths for AR
animations in the real world, our approach considers the user’s
position and viewpoint so as to keep the user visually engaged with
the AR content. To achieve this goal, our approach tackles several
challenges: (1) understanding the input scene’s context; (2) deter-
mining the waypoints where the character should perform the input
storyline actions; and (3) finding the optimal path while considering
the storyline action waypoints and the user’s perspective.

Our secondary goal is to synthesize adaptive character anima-
tions in AR by analyzing scene semantic information. For example,
consider animating a dragon in AR. An environment possesses var-
ious inherent semantic information and relevant interactions for a
dragon, e.g., watery areas for drinking, shady areas for sleeping, and
so on. During the preprocessing step, we utilize a learning-based
predictor to determine the suitable scene regions for performing
different character actions. Based on this correlation between the
environment and the character’s actions, we explore where cer-
tain behavioral animations should occur by optimizing objective
functions considering several factors such as visibility and compati-
bility of the corresponding generated path. The user can then watch
the character animation in AR, where the virtual character (e.g., a
dragon) follows the generated path and performs storyline actions
at chosen waypoints. Overall, our contributions are the following:

• We devise a learning-based method for determining the loca-
tions for a virtual character to perform its storyline actions
in outdoor environments;

• We propose an automatic approach for synthesizing user-
centered flying creature animation paths in 3D scenes for
outdoor augmented reality experiences;

• We evaluate the effectiveness of our approach via experi-
ments conducted under various conditions and user studies
performed in the real world.

2 RELATEDWORK
2.1 Scene Understanding for Augmented Reality
One of the pioneering works of outdoor AR is the Touring Ma-
chine [Feiner et al. 1997], a system that integrated virtual 3D graphic
information into 3D real-world scenes. Researchers also proposed
an approach for providing AR visualization on a city scale [Lee
et al. 2012] and devised a virtual component registration mecha-
nism by using 3D Geographic Information System [Huang et al.
2016]. Regarding indoor AR, researchers focused on the analysis of
indoor environments by considering 3D object layout generation
for AR [Gal et al. 2014], exploiting spatial relationships and inter-
action between a user and a virtual character [Lang et al. 2019],
and expanding scene analysis to 3D scene graphs that encode the
relations of objects [Tahara et al. 2020].

Several works explored leveraging scene geometry for indoor
augmented reality. Some of these works [Ipsita et al. 2021; Sankar
and Seitz 2017; Wang et al. 2021] facilitated capturing scene geom-
etry for augmented reality content-authoring. In terms of design
process, SceneCtrl [Yue et al. 2017] enables the re-design of these
captured indoor scenes andWarpy [Alghofaili et al. 2023] integrates

scene geometry into the creation of in-situ 3D curves in AR. In con-
trast to indoor AR research, existing outdoor AR works mainly
account for displaying information based on geographical data.
They generally do not consider context-based scene understand-
ing as much as indoor AR works do. Our work analyzes outdoor
scenes to model the correlations between environmental features
and affordances pertaining to a virtual character’s actions in AR.

2.2 Animation Path Generation
Pathfinding is a classic problem in computer graphics and robotics
research. Popular pathfinding algorithms includeA* algorithms [Hart
et al. 1968] based on grid search, RRT [Karaman and Frazzoli 2011]
based on sampling, etc. Abd Algfoor et al. [2015] and Sánchez-
Ibáñez et al. [2021] conducted a comprehensive survey about these
algorithms. Though there are numerous pathfinding methods, most
existing methods are not user-oriented, meaning that they ignore
visibility from the user and semantic information in the user’s
surroundings. As for finding a path for a flying character, prior
research works focus on efficient approaches to generate an aerial
path, particularly, for drones that perform large-scale urban recon-
struction [Yang et al. 2018; Zhang et al. 2021], for quadrotor camera
path of aerial video [Gebhardt and Hilliges 2021; Joubert et al. 2015;
Xie et al. 2018], and for virtual winged characters [Won et al. 2017,
2018]. Those works explored paths to pursue specific objectives via
optimization or reinforcement learning methods.

In AR environment, previousworks suggested different approaches
to control the motions and paths of virtual characters using hard-
ware devices [Anderegg et al. 2018; Garcia et al. 2019; Ye et al. 2020].
However, these works utilized a mobile device trajectory created
by user manipulation, they do not incorporate the information of
the scene or surrounding environment. As for animal agents, a
scene-aware behavior generator [Liang et al. 2021] was proposed
to enable a virtual pet to interact with a virtual indoor scene. In
contrast to prior research which operated in a small indoor scene,
our work focuses on generating a user-centered flying creature
animation path for a large-scale outdoor scene.

2.3 Augmented Reality Storytelling Aid
As AR functionalities advance, many immersive AR storytelling
experiences have been explored. As for pioneering works, a tan-
gible AR interface for storytelling [Zhou et al. 2004] and methods
for extending real books to AR were proposed [Billinghurst et al.
2001; Grasset et al. 2008]. As for story authoring, Rumiński and
Walczak [2013] proposed an authoring tool for creating interactive
AR content on mobile devices. Such approaches have been extended
to deal with interactive situations, for example, Li et al. [2022] pro-
posed an interactive AR storytelling approach to enable a user to
participate in an indoor AR story. However, the above works did not
consider the varying viewpoints of users. Like Dreamwalker [Yang
et al. 2019], which embeds a pre-authored VR environment into the
real world, our work enables users to experience AR storytelling
in an outdoor scene by watching virtual character animations syn-
thesized for the scene considering the user’s perspective. As for
outdoor AR experience, Li et al. [2023] focused on conveying AR
storytelling with a pleasurable walking route based on a 2D input
map and employing compatibility values from pre-defined zone
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Figure 2: An overview of our approach. The location compatibility prediction model computes the location compatibility values
for performing different character storyline actions on the input 3D scene. During target and path synthesis, our approach
generates optimal waypoints and a corresponding path on the input 3D scene by using the prediction result from the previous
step and a storyline action sequence specified by the designer.

maps. Compared to their work, our work generates user-centered
AR animation paths in 3D space represented by voxels, which con-
siders user-centered factors like the visibility of the animation path
with respect to the user amid 3D structures in the real world. More-
over, our prediction model infers compatibilities in new 3D scenes
by a few-shot learning approach rather than using pre-defined zone
maps. Our approach may complement existing story generation
works [Chen et al. 2021; Zhang et al. 2019] by adapting generated
stories to different environments.

3 OVERVIEW
Figure 2 shows an overview of our approach. Our goal is to generate
an optimal character animation path for a given storyline to be vi-
sualized in a real-world outdoor environment in augmented reality.
It takes a sequence of the virtual character’s storyline actions and
the real-world 3D surrounding of the user as input. Based on the
3D scene, our approach infers the compatibility of each storyline
action by a learning-based method (Section 4). With the trained
prediction model, our approach automatically samples waypoints
where the virtual character will perform its storyline actions, and
synthesizes a corresponding animation path via an optimization. In
sampling the waypoints, the optimizer considers the locations’ com-
patibility for performing the character’s actions (Section 5). Based
on the generated results, the user wearing an AR headset (e.g., a
HoloLens 2) watches the virtual character animated via the synthe-
sized animation path, performing the sequence of storyline actions
at semantically compatible places within the user’s surroundings
in the real world.

3.1 Problem Representation
As shown in Figure 3, our approach represents the virtual 3D scene
as a voxel set V = {𝑉𝑖 } with an adaptive octree structure. The
voxels within the set refer to different levels of detail and vary in
size depending on whether the enclosed 3D space contains scene ge-
ometry. Each voxel encodes its location compatibility with respect
to storyline actions inferred by a learning-based method (Section 4),
as well as visibility and distance information with respect to the
user, who is assumed to be standing at a particular location and
facing a particular direction in the scene.

Figure 3: A grid of voxels
with varying sizes rep-
resenting the input 3D
scene.

Our approach is formulated as an
optimization. In each iteration of the
optimization, it samples waypoints
W = {𝑤𝑖 } among the voxel cen-
ters, based on which a modified A*
pathfinding method is applied to com-
pute a connecting path. The location
compatibility and visibility of the sam-
pled waypoints, as well as the vis-
ibility, distance from the user, and
smoothness of the generated path, are
considered in the optimization. The
optimization approach generates a set
of optimized waypoints and a connect-
ing path in the voxel space as the output. In a postprocessing step,
we apply the De Casteljau algorithm to composite multiple Bezier
curves, whose end points match the optimized waypoints, to obtain
a smooth animation path. To compute Bezier curevs, a closed-form
formula could be also applicable.
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4 LOCATION COMPATIBILITY PREDICTION
We were inspired by the work of Savva et al. [2014] to predict the
compatibility of locations within a 3D scene for a virtual character
to perform specific actions. Savva et al. [2014] proposed a method to
establish correlations between the geometry and the functionality
of 3D indoor scenes, which could be adopted for inferring com-
patible storyline actions. Our location compatibility method infers
the character’s actions for large-scale outdoor 3D scenes instead.
Using a learning-based method, the location compatibility method
predicts the probabilities that a specific location is compatible with
various classes of storyline actions 𝐴 = {𝑑𝑟𝑖𝑛𝑘, 𝑒𝑎𝑡, 𝑠𝑖𝑡, 𝑠𝑙𝑒𝑒𝑝, 𝑠𝑤𝑖𝑚}.
We focused on five actions that are common across both real and
imaginary creatures. More actions can be supported through addi-
tional annotated data by using our method, which predicts human-
preferred locations for these actions. Figure 6 visualizes the location
compatibility values with different actions for an example scene.

4.1 Prediction
Our location compatibility prediction model was based on a few-
shot learning method employing a feature extractor and a fine-
tuned model. We used a pre-trained feature extractor to extract
image features. This method suits our dataset composed of a rela-
tively small number of images with annotation.

Feature Extraction. In this stage, we used a pre-trained ResNet-
18 [He et al. 2016] as a feature extractor to extract features from
images in our training dataset, which we later used to compute
a mean feature vector 𝜇 per action. Figure 4 (top) illustrates the
feature extraction stage:

𝜇 =
1
𝑛

𝑛∑︁
𝑖=1

𝑓𝜃 (𝐼𝑖 ) (1)

Given an image 𝐼𝑖 , the extractor generates the feature vector 𝐹𝑖 =
𝑓𝜃 (𝐼𝑖 ) and computes a mean feature vector 𝜇. We generated |𝐴|
mean feature vectors for all storyline action classes by using our
training set containing 4,036 locations images in total. Here, |𝐴| is
the total number of all available storyline action classes.

Fine-Tuning. Before fine-tuning our storyline action predictor,
we initialized its weights. Given the set of storyline action class
𝐴, and each class 𝑖 having {𝜇𝑖 } computed from Equation 1, we
constructs initial weight 𝑀 = {𝜇1, 𝜇2, ..., 𝜇 |𝐴 | } where 𝑀 ∈ 𝑅𝑑×|𝐴 |

by concatenating all 𝜇𝑖 . Here, 𝑑 is the length of the feature vector.
We trained our storyline action predictor with weight 𝑀 by fine-
tuning the extractor 𝑓𝜃 with the training data.

𝑍𝑎 (𝐼𝑖 ) = 𝜎 (𝑀 · 𝐹𝑖 ) (2)

In Equation 2, given an image 𝐼𝑖 from the training dataset, we
extracted the feature 𝐹𝑖 . Then, the predictor measures the similarity
between weight 𝑀 and 𝐹𝑖 of input image 𝐼𝑖 . The sigmoid layer 𝜎
produces the compatibility value vector 𝑍𝑎 (𝐼𝑖 ) with respect to the
storyline action class 𝑎 ∈ 𝐴 for image 𝐼𝑖 .

Location Compatibility Prediction. After the fine-tuning stage,
our predictor can predict the compatibility values 𝑍𝑎 with respect
to storyline action class 𝑎 ∈ 𝐴 on new image data. For each voxel,
we compute its location compatibility values with respect to the
storyline actions. Note that the voxels in the grid have varying
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Figure 4: Two stages of training the location compatibility
prediction model. In the environmental feature extraction
stage, we compute the mean environmental feature by using
the pre-trained feature extractor. The computed mean fea-
ture vectors are used to initialize the weight of our predictor.
In the fine-tuning stage, both feature extractor and fully con-
nected predictor are updated.

sizes. A large voxel may contain multiple sampled locations of
the scene. Figure 5 shows an illustration, where the red asterisk
denotes a voxel’s center and the green asterisks denote the sampled
locations contained by this voxel. Note that the center of a voxel
are not included as sampling. The compatibility value with respect
to storyline action 𝑎 of a voxel 𝑣 is computed by averaging the
compatibility values of the sampled locations contained by the
voxel:

𝑍𝑎 (𝑣) =
1
|𝛼 |

∑︁
𝐼 ∈𝛼

𝑍𝑎 (𝐼 ), (3)

Figure 5: Sampling il-
lustration. Since the
voxel size varies,mul-
tiple sampling occurs
in a voxel.

where 𝛼 is the set of location images of all
sampled locations contained by voxel 𝑣 .
Figure 6 shows the location compatibility
maps of different storyline actions. Each
map consists of a grid of voxels overlaid in
the scene. Each voxel is colored according
to its location compatibility value for the
storyline action class calculated by (3). As
observed, the drink action is compatible
with locations around the lake shore; the
swim action is mainly compatible with
the lake; while the eat action shows mod-
erate compatibility rather than a strong
preference for particular locations on the
map.
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(a) Drink. (b) Eat. (c) Sit. (d) Sleep. (e) Swim.

Figure 6: Location compatibility maps. Each map depicts the location compatibility values with respect to a storyline action
class. The red in the map denotes the location compatibility and its intensity increases with the location compatibility value.

Architecture. Our approach is inspired by few-shot learningmeth-
ods used in previous works [Chen et al. 2019; Dhillon et al. 2019].
Unlike these previous works which trained their networks from
scratch, we employed a pre-trained ResNet-18 [He et al. 2016] with-
out its last fully-connected layer. In our predictor, we added a new
fully-connected layer with a sigmoid layer to predict storyline ac-
tions. Please refer to related papers [Chen et al. 2019] for details.

5 WAYPOINT AND PATH SYNTHESIS
To achieve our goal of finding a user-centered flying creature ani-
mation path, our approach samples waypoints among voxel centers.
The virtual character performs the storyline actions at the way-
points. Specifically, our objective is to sample a sequence of way-
points W = {𝑤1, ...,𝑤𝑛} for performing the sequence of storyline
actionsA = {𝑎1, ..., 𝑎𝑛}. During the optimization, thewaypoints are
updated, and our modified 𝐴∗ algorithm computes the correspond-
ing optimal path P = {𝑣1, ..., 𝑣𝑛}. We use a Markov chain Monte
Carlo sampler to search for the optimal solution. Note that path P
is deterministic on the chosen waypoints because it is obtained by
using our modified A* algorithm. In other words, waypointsW are
the only decision variables for optimization.

5.1 Cost Function
To evaluate the proposed solution 𝑇 = {(W,P)}, we define a total
cost function:

𝐶total (𝑇 ) = 𝜆way𝐶way (W) + 𝜆path𝐶path (P), (4)

whereW = {𝑤1 ...𝑤𝑛} is a sequence of proposed waypoints. The to-
tal cost function consists of two parts: waypoint cost𝐶way (W) and
path cost 𝐶path (P). While computing the costs, 𝐶path (P) changes
with𝐶way (W) becauseP depends onW. In other words,𝐶path (P)
represents the cost of the current path determined by the current
waypointsW.

The waypoint cost𝐶way (W) comprises two cost terms, location
compatibility cost𝐶l and visibility cost𝐶v with weights 𝜆l and 𝜆vw:

𝐶way (W) =
𝑛∑︁
𝑖=1

(
𝜆l𝐶l (𝑣𝑖 , 𝑎𝑖 ) + 𝜆vw𝐶v (𝑣𝑖 )

)
. (5)

Here, 𝑣𝑖 is the voxel at which waypoint𝑤𝑖 is located in the current
solution. The path cost 𝐶path (P) is calculated using the generated

path P = {𝑣𝑘 } covering a series of voxels:

𝐶path (P) =
∑︁
𝑣𝑘 ∈P

(
𝜆vp𝐶v (𝑣𝑘 ) + 𝜆d𝐶d (𝑣𝑘 ) + 𝜆s𝐶s (𝑣𝑘 )

)
. (6)

𝐶path (P) consists of three terms: visibility 𝐶v, distance 𝐶d, and
smoothness 𝐶s with corresponding weights 𝜆vp, 𝜆d, 𝜆s. Note that
the visibility cost is employed twice with different weights, 𝜆vw
and 𝜆vp, for evaluating the visibility of the waypoints in (5) and the
visibility of the path in (6). We elaborate the constituent cost terms
in the following sections.

5.1.1 Location Compatibility Cost. First, we define the location
compatibility term to compute whether the waypoint𝑤𝑖 ’s voxel 𝑣𝑖
is compatible with the given storyline action 𝑎𝑖 :

𝐶l (𝑣𝑖 , 𝑎𝑖 ) = 1 − 𝑍𝑎𝑖 (𝑣𝑖 ), (7)

where 𝑍𝑎𝑖 (𝑣𝑖 ) is a compatibility value of storyline action 𝑎𝑖 at voxel
𝑣𝑖 that we obtain from our predictor (Section 4). This cost prompts
storyline action 𝑎𝑖 to occur at voxel 𝑣𝑖 with a high compatibility.

5.1.2 Visibility Cost. One significant part of our system is checking
the visibility of the surrounding environment with respect to the
user. As we represent the surrounding environment by a voxel grid,
we checkwhether these voxels are visible with respect to the current
position and head orientation of the user. We apply two culling
processes, frustum culling and occlusion culling, to determine the
visibility cost of each voxel. First, frustum culling excludes the
voxels that are outside the camera’s view frustum. Specifically, the
camera pose is set to the user’s head pose. After frustum culling,
the retained voxels go through an occlusion culling test. In this test,
our approach checks whether the voxels are occluded by obstacles
in the surrounding environment from the view of the user.

Given a voxel 𝑣𝑖 , our approach calculates its visibility value𝜎𝑣𝑖 by
performing an occlusion test for all its eight corners and the center.
If a corner is visible, 1 is added to the visibility value𝜎𝑣𝑖 . If the center
is visible, 8 is added to the visibility value 𝜎𝑣𝑖 to account for the
larger significance of the voxel center in representing the voxel’s
visibility. Therefore, each voxel 𝑣𝑖 is associated with a visibility
value 𝜎𝑣𝑖 ∈ [0,𝑉max], where 𝑉max = 16. A voxel that is completely
invisible has a visibility value of zero. We then define the visibility
cost of each voxel 𝑣𝑖 as:

𝐶v (𝑣𝑖 ) =
𝑉max − 𝜎𝑣𝑖

𝑉max
. (8)
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5.1.3 Distance Cost. To generate a user-centered result, we add
a distance term to keep the generated path close to the user. The
distance term acts as a regularization determining a closer path
when multiple path candidates have the same visibility. In addi-
tion, the designer can choose whether to apply this distance term
and set different target distances as needed. Before starting the
optimization, our approach computes the distances between the
centers of all voxels and the user’s position. We assume that the
area where the user can walk around is bounded in the real environ-
ment. Therefore, we set the maximum distance as 𝐷max to ensure
a proper distance between the virtual character and the user. By
default, we set 𝐷max = 250 in our setting. The distance cost of a
voxel 𝑣𝑘 is defined as:

𝐶d (𝑣𝑘 ) =
𝑑𝑣𝑘

𝐷max
, (9)

where 𝑑𝑣𝑘 is the distance between the user’s position and the center
of voxel 𝑣𝑘 , and it is normalized by 𝐷max.

5.1.4 Smoothness Cost. We define a smoothness cost to steer the
A* algorithm to select the smoothest path possible:

𝜃𝑣𝑘 = v𝑣𝑘−1𝑣𝑘 · v𝑣𝑘 𝑣𝑘+1 ,

𝐶s (𝑣𝑘 ) =
1
2
(
1 − cos(𝜃𝑣𝑘 )

)
.

(10)

Figure 7: Smoothness
cost. The term penalize
the angle 𝜃𝑣𝑘 between
the current 𝑣𝑘 and the
next candidate 𝑣𝑘+1.

Figure 7 depicts the smoothness
cost. Unlike other cost functions, the
smoothness cost is obtained during
the runtime of the algorithm by cal-
culating the angle change 𝜃𝑣𝑘 based
on the previously selected voxel 𝑣𝑘−1,
the current voxel 𝑣𝑘 , and the next
candidate voxel 𝑣𝑘+1 along the path
that the character traverses. Without
this term, the algorithm may generate
paths with sharp corners.

5.2 Modified A* Algorithm
We apply a modified A* algorithm to find the optimal path for the
virtual character in AR considering the visibility, distance from the
user, and path smoothness. The A* algorithm [Hart et al. 1968] is
broadly applied for pathfinding. Due to its simplicity and robust-
ness, we utilize the A* algorithm for generating animation paths
considering three terms: visibility cost 𝐶v, distance cost 𝐶d, and
smoothness cost 𝐶s. These terms estimate the path cost from the
start voxel to the destination voxel by accumulating the cost asso-
ciated with each voxel of the generated path. 𝜆vp, 𝜆d and 𝜆s are the
weights of each cost and they are set as 0.7, 0.2, and 0.1, by default.

Our modified A* algorithm searches for a path, starting from
the waypoint where the virtual character is located and ending
at the final waypoint where the last storyline action takes place.
After running the A* algorithm, we obtain the sequence of voxels
comprising the optimized path. The optimized result can produce
either a 3D path or a 2.5D path along the ground or wall depends
on which voxels are selected. For example, if the designer wants
to generate the animation path for a humanoid character walking
on the ground, they can choose that the algorithm ignores mid-air
voxels and produce 2.5D path.

Our modified A* algorithm computes the term𝐺 , which consists
of the current path cost 𝐶path (Pg) and an estimated heuristic path
cost 𝐶path (Ph)

𝐺 = 𝜆g𝐶path (Pg) + 𝜆h𝐶path (Ph), (11)

where Pg = {𝑣𝑠 , ..., 𝑣𝑖 } from the start voxel 𝑣𝑠 to the current voxel
𝑣𝑖 and Ph = {𝑣𝑖 , ..., 𝑣𝑑 } from the current voxel 𝑣𝑖 to the destination
voxel 𝑣𝑑 . By default, we set the weights 𝜆g = 0.8 and 𝜆h = 0.2. For
the customized terms, we apply the three cost terms aforementioned.
First, the visibility cost𝐶v helps pick the visible voxels to approach
the destination. By reducing the value of the visibility cost, the
algorithm selects a visible path through the user’s surrounding
environment. Second, we use the distance cost 𝐶d to prompt the
path to stay close to the user. Third, we apply the smoothness
cost 𝐶s to favor a smooth path rather than a zig-zag path with
sharp turns. Figure 8 shows the effects on the waypoints and paths
if a cost term is omitted from the optimization as an ablation test.

5.3 Procedure
In the optimization step, we apply simulated annealing [Kirkpatrick
et al. 1983] with a Metropolis-Hastings state-search step [Hastings
1970; Metropolis et al. 1953] to find the optimal solution satisfying
our optimization criteria. We define a Boltzmann-like objective
function:

𝑓 (𝑇 ) = 𝑒
1
𝜏
𝐶total (𝑇 ) , (12)

where 𝜏 is the temperature parameter of simulated annealing. The
temperature is decreased gradually over the optimization iterations.
The lower the temperature is, the greedier the optimization is. The
optimization is terminated when the total cost change converges
to less than 3%. In practice, we set 𝜆way = 50, 𝜆path = 1, 𝜆l = 0.9,
𝜆vw = 0.1, 𝜆vp = 0.7, 𝜆d = 0.2, and 𝜆s = 0.1. Note that the lambda
values can be adjusted depends on characteristics of a scene, for
example, the spaciousness of the experiment locations.

Proposed Moves. To explore the possible waypoint locations, our
optimizer proposes a local move that translates a randomly-selected
waypoint within a certain range slightly and randomly. This range
also reduces with the temperature decrease until reaching 20% of the
original range. Our optimizer also applies a global reconfiguration
move occasionally that swaps two randomly-selected waypoints.
The selection probabilities of the local move and global move are
set as 90% and 10%. The proposed solution formed by applying a
move is accepted with a probability set by the Metropolis criterion.

6 EXPERIMENTS
We performed a series of experiments to show the general applica-
bility of our approach as well as its capabilities of handling different
practical situations. For the implementation details of model train-
ing and deployment, please refer to our supplementary material.

6.1 Dragon Results
We use a virtual dragon as the character and a campus as the
environment in this experiment. There are two stories, Story A
(Sleep-Sit-Swim) and Story B (Sit-Eat-Sleep), as well as three loca-
tions (Locations 1, 2, & 3), used in this experiment. Since there is no
area with water near Location 3, we add a virtual environmental
object (i.e. a virtual pond) having high location compatibility values
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(a) All costs. (b) No visibility cost. (c) No distance cost.

(d) No smoothness cost. (e) No cost (traditional A*). (f) No location compatibility cost.

Figure 8: Effects of omitting costs with a virtual wall. (a) A path generated with all costs. (b) The result without the visibility cost
is less visible and more occluded by the wall. (c) The result without the distance cost shows a long path which is far from the
user. (d) The result without the smoothness cost has a steep direction change after the start point. (e) The result of traditional
A* refers to a shortest path with no user-centered consideration. (f) The result without the location compatibility cost shows
actions performed at incompatible places. Green dashed lines denote the user’s view range. Magenta dotted lines denote the
occluded portions of the generated paths.

for swim and drink. Based on these, we created four story-location
combinations of scenarios to show our approach’s efficacy and
adaptiveness. Our approach could be integrated into story-agnostic
environments and constitute part of AR storytelling system.

Figure 9 shows the results. The top figure shows an overview
of the environment and the four story-location combinations. The
first two rows show the results of adapting Story A to two different
locations (Locations 1 & 2) by our approach, demonstrating the
its location adaptiveness. The last two rows show the results of
delivering two different stories (Stories A & B) at the same location
(Location 3), showing the capability of our approach for generating
user-centered AR experiences at a location. In each row of the result,
the overview figure shows the waypoints and path generated. The
zoom-in views of the three storyline actions are also shown, which
depict how the dragon animates and performs the actions at the
chosen waypoints from the user’s view. The top-right sub-figure
shows the compatibility with the corresponding action, with red
voxels indicating a high compatibility. In general, the waypoints
are reasonably chosen according to their associated storyline ac-
tions and they are compatible with the contexts of the environment.
According to the location compatibility maps (Figure 6) and the
top-right sub-figures in each row of result, all actions (sleep, sit, eat,
and swim) are placed at locations with high compatibility values of
the commensurate actions. For example, the dragon swims in the
lake or the virtual fountain. Furthermore, the paths found by our ap-
proach are fully visible from the user’s locations. The results show
that our approach placed the waypoints and the path reasonably. As
another example of showing spatial adaptivity across different en-
vironments, we conducted experiments in Sydney’s urban area and
Hawaii’s nature park. Please refer to our supplementary material.

6.2 Changing Viewpoint
Depending on the user’s position and orientation, our approach
can recompute the path regarding the user’s updated viewpoint.
It updates the visible voxels regarding the user by performing the
visibility test again. Figure 10 shows two examples on the lake
side and the campus. As the user walks from right to left in both
examples, the path are updated so that the dragon animation stays
visible to the user. Our approach takes less than a second (50 ms
in average) to recompute a path, which can achieve a real-time
experience. The frequency of updates depends on the user’s distance
traveled. In this example, we updated the path every time the user
moved one meter from their previous location, while determining
the visibility based on the orientation where the user was looking
at the moment.

6.3 Waypoint Constraints
Our approach can be extended with waypoint constraints to meet
additional design needs (Figure 12). A designer can fix certain way-
points on the 3D scene geometry to control where certain storyline
actions take place. The dragon is assumed to fly straight, avoiding
obstacles between a pair of fixed waypoints by using traditional A*.
Our approach finds the optimized path of the remaining waypoints
in adherence to the fixed waypoint constraints. This can generalize
our approach to support other animation and locomotion e.g. crawl-
ing, walking, and wall climbing. With constraints, our approach
can be applied differently, not limited to a flying creature. Figure 12
shows two example of setting a pair of waypoints on the windows
and the wall to guide the dragon to fly adequately.



SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Minyoung Kim, Rawan Alghofaili, Changyang Li, and Lap-Fai Yu

6.4 Special Viewpoint
Our approach considers the 3D layout of the real-world scene when
calculating waypoints and the path from the user’s perspective. The
user is not restricted to standing on the ground when viewing the
augmented reality experience because our approach considers 3D
space visibility. Figure 11 shows an example where the user is on a
fourth floor in a building looking outside the window. Our approach
samples appropriate waypoints on the ground and computes a
clear path visible to the user to show the dragon in augmented
reality. However, it may face restrictions within heavily constrained
environments, such as crowded obstacles and tall buildings.

7 DISCUSSION
We conducted a real-world user study to evaluate our approach
in terms of human-centered factors (e.g., visibility, engagement,
effortlessness). We collected 25 participants’ feedback on four paths
e.g., Random-Traditional A* (Baseline), Designer-Traditional A*,
ML-Traditional A* (Ours), and ML-Modified A* (Ours) at three dif-
ferent locations. Participants’ ratings on the results showed that
our approach selects the most pleasurable and environmentally
compatible waypoints, and generates a user-centered path from the
participants’ standpoint. Please refer to our supplementary material
for the details of our user study design and statistical results.

Participants commented that the right proximity of the anima-
tion path is important in AR experiences. Some said that they were
entertained when the character was close, while others felt uncom-
fortable and confused. We believe that the right proximity depends
on the user’s preference and the type of the animation content to be
shown. Findings from psychology and crowd simulation research
pertaining to social distances [Hall and Hall 1966; Narain et al.
2009] might also be applied to place virtual characters within a
comfortable distance of the user in augmented reality. Additionally,
we observed that a location’s layout may affect the users’ proximity
perception. For the details of the location-specific analysis, please
refer to our supplementary material. Some participants said that
they felt fatigued if they had to look up for a while. As we animated
a flying creature, we expected that most of our animation results
took place in mid-air. Future research may consider the head and
neck tiredness associated with the AR animation path in line with
recent research on optimizing AR ergonomics by modeling and
predicting a user’s neck muscle contraction [Zhang et al. 2023].

8 LIMITATIONS AND FUTUREWORK
We discuss the limitations of our approach, which are interesting
avenues for future extension. First, before applying our approach,
the virtual and real-world objects (e.g., buildings) need to be aligned.
Since our approach runs on the virtual world representation of the
real-world environment where the user watches the animations in
AR, the virtual world representation needs to be registered with
its real-world counterpart for playing the animation via the AR
device. A method for fast and accurate registration between the
real world and its digital twin will facilitate the deployment of our
approach in practice. Second, while our approach considers the
3D scene with buildings and large landscape entities such as lakes
and buildings, it does not consider small objects such as benches
and flowers, due to the limited resolution and the lack of details of

the 3D scene representation that our approach runs on. Moreover,
dynamic objects, such as pedestrians and cars, may be present in
the scene, which our approach does not consider. Future work may
apply computer vision techniques to recognize and reconstruct real-
world objects in front of the user in real time. Third, our approach
assumes one user, while a large-scale AR experience, such as an AR
game, may involve multiple users at different locations and with
different viewpoints seeing the same virtual character. For further
discussion in practical limitations, please refer to our supplementary
material.
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(a) Overview.

(b) Story A (Sleep–Sit–Swim), Location 1.

(c) Story A (Sleep–Sit–Swim), Location 2.

(d) Story A (Sleep–Sit–Swim), Location 3.

(e) Story B (Sit–Eat–Sleep), Location 3.

Figure 9: Waypoints and paths synthesized for a dragon on campus with respect to different story-location combinations. The
face icon represents the user’s position. The circular sector denotes the user’s view. For each storyline action, the image at
the upper-right corner shows the location compatibility map, where a high redness refers to a high compatibility with the
action shown. The blue dot on the map shows the flying creature’s waypoint. We generated all paths in this scene with 𝜆l = 0.7,
𝜆vw = 0.3, 𝜆vp = 0.7, 𝜆d = 0.2, and 𝜆s = 0.1. Note that the 𝜆 values can be adjusted to control the trade-off between different
considerations such as location compatibility and visibility.
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Overview

Viewpoint 1

Viewpoint 2

Viewpoint 3

(a) Lake side.

Overview

Viewpoint 3

Viewpoint 2

Viewpoint 1

(b) Campus.

Figure 10: Two changing viewpoint results on (a) lake side and (b) campus. As the user walks from right to left, changing the
viewpoint from viewpoint 1 (in purple), to viewpoint 2 (in red) and then to viewpoint 3 (in cyan), our approach recomputes
the waypoints and the path according to the user’s updated viewpoints. Note that in (a), the early portion of the red curve is
overlaid by the cyan curve; in (b), the last portions of all the paths overlap with each other.

(a) Optimization result. (b) Real-world visualization.

Figure 11: A result generated for a user looking outside the
window from a building. The optimization result and its real-
world visualization are shown.

(a) Window-to-window. (b) Along the wall of a building.

Figure 12: Results generated with waypoint constraints. (a)
Two waypoints (in green) are set at two windows to guide
the dragon to fly through the building. (b) Two waypoints
(in green) are set on the wall to guide the dragon to fly along
the wall.
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